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Renormalization-group results for lattice surface models 

Emilio N M C i l l o  and Giuseppe Gonnella 
Dipartimento di Fisica dell'Universia di Bari and Istituto Nazionale di Fisica Nuclem, 
Sezione di Bari, via Amendola 173,1-70126 Bari, Italy 

Received 10 November 1994 

Abstract. We study the phase diagram of statistical systems of closed and open interfaces 
built on B cubic lattice. Interacting closed interfaces m be writlen as Ising models, while 
open surfaces can be written Z(2) gauge systems. When the open surfaces reduce to closed 
interfaces with few defects, the gauge model can be also wrilten as M Ising spin~model. We 
apply the lower bound renormalization group (LBRC) transformation introduced b$ Kadanoff 
(1975 Phys. Rev. Left 34 1005) to study the Ising models, describing closed and open surfam 
with few defects. In particular, we have studied the Ising-like transition of self-avoiding surfaces 
between the random isotropic phase and the phase with broken global symmetry al vmjing values 
of the mean curvature. Our results are compared with previous numerical work. The limits of 
the LBRG transformation in describing regions of the phase diagram where non-Ferromagnetic 
ground states are relevant are also discussed. 

1. Introduction 

In this paper we will apply a renormalization-group transformation to study the phase 
diagram of interface models built on ~a cubic lattice. Fluid in,terfaces in 3 0  statistical 
systems are the subject of much current research [I]. They provide useful descriptions of 
experimental systems such as mixtures of oil, water and surfactant, or aqueous solutions of 
surfactant [2].  In ternary mixtures the surfactant forms monolayered interfaces between oil 
and water: in aqueous solutions bilayered membranes are typical constituents of biological 
cells. The properties of these systems at low surfactant concentrations are relevant 
for both practical and theoretical reasons. For example, in ternary~mixtures, a middle 
phase [3] coexisting with oil-rich and water-rich phases is considered very appealing for 
applications [4], due to the very low surface tension values between the coexisting phases. 
From a theoretical point of view, dilute interfaces can be seen as experimental realizations 
of random surface models where self-avoidness is the only relevant interaction [SI. 

The typical lack of topological constraints on the physical configurations suggests the 
use of lattice models to describe ensembles of fluid surfaces. First consider the case'ofclosed 
interfaces without defects such as holes or seams. Closed interfaces can be described in king 
models as the boundaries separating domains of opposite spins, which, in the identification 
with ternary mixtures, can represent oil and water. The interfaces are built on the dual lattice, 
and, for a given spin configuration (q], have a total area S = C(ij,(l - quj) /2 ,  where 
the sum is over all nearest-neighbour pairs in the original lattice. Other surface energies 
can be considered by introducing further spin interactions. Surfaces where curvature and 
intersections [6] are also weighted can be represented by a generalization of the king model 
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defined by the Hamiltonian [7-91 
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where the three sums are over the nearest, next-to-the-nearest neighbours and plaquettes of 
a cubic lattice, respectively. Here and in the following, our definitions of the Hamiltonian 
will always include the factor -@. The parameters A,& and can be expressed in 
term of the surface parameters Bs, ,9c and @L [9] representing, respectively, the energy 
cost for an elementary area (one plaquette on the dual lattice), for two plaquettes at right 
angles, and for four plaquettes with a common bond [lo]. A positive ,9c favours flat 
configurations; it corresponds to a mean curvature energy, which has been proved to 
be an useful phenomenological parameter for describing fluid interfaces’ [ 11 1. The term 
proportional to BL can mimic the self-avoidness interaction in the limit pL + 03, when 
surfaces touching each other along some contour are forbidden. The relations between spin 
and surface parameters are 

(2 
The phase diagram of the model (1) was studied by mean-field and numerical simulations 
in [8,9]. It exhibits many properties relevant for real systems, as also discussed in [12]. 

If one wishes to consider the effects of defects in fluid interfaces, ensembles of open 
surfaces have to be introduced. A simple lattice realization of open surfaces [13] is given 
by the self-dual Z(2) gauge model [14]. Here two-value variables { U i j ]  are defined on the 
bonds of a cubic lattice. One says that the plaquette dual to the bond (ij) is occupied by some 
surface if U i j  = -1; it is not occupied if U i j  = 1. Therefore a given {Ui j }  configuration 
corresponds on the dual lattice to a surface configuration with area S = - Uij)/2.. 
A bond on the dual lattice can be said to belong to some defect if an odd number of the 
dual plaquettes sharing that bond is occupied by some surface. Defects defined in this way 
can be counted by considering the product of Uij over the bonds of each plaquette in the 
original lattice. It is easy to recognize that the total length of defects will correspond to the 
quantity 2, = xid(1 - U ~ V j k U k i U i j ) / Z  [13]. Therefore the self-dual Z(2) gauge model 
with Hamiltonian given by 

I A = $(@s +BL) + Bc .A = -$@L - a@c % = -$@L + 4 B C .  

H = BM u i j  + BC u i j  UjkUkl uri (3) 
( i j )  Id 

describes open surfaces where area and defects are both weighted. Self-duality here [ 141 
means that the model is symmetric with respect to the transfopnations 

@M + Bc = -i lntanh @M @c --f BM = -i In tanh @G. (4) 

In the parametrization (3) a large value of PM favours configurations with small area, while 
a large value of , 9 ~  inhibits defects. 

The phase diagram of the self-dual Z(2) gauge model was first analysed in [14,1S]; 
it has been studied by Monte Carlo simulations in [16]. At small values of @M-and 
analogously, by self-duality, at large values of &-it can be shown [lS, 171 that the model 
(3) can be expanded as an king spin model with an increasing number of interactions. For 
example, at the second order of the expansion at small & the model (3) can be written as 

ff = 3 UiUj f & UiUj + % ~ ~ U i U j u k U f  + & f l iujukuf (5 )  
c m  

( i j )  ((ij)) :s: 
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Table 1. The coordinates of the fixed point related to the P-AF-P transitions are reported for 
the value p = p,: which maximires the free energy of the critical FP fixed point (C). The 
other symbols (F), (AF), (P), (AC), (D) and (L) denote. respectively. the low-temperature 
ferromagnetic and antiferromagnetic fixed points, the high-temperature, the critical AFP, the 
discontinuity fixed point between the AF and F phases, and the fixed point on the manifold 
separating the domains of attraction of the fixed points (C) and (D) (on the hypersurface limiting 
the F phase). The two squares on the left represent two parallel faces of an elementary cube of 
the lattice. The dots represent the spins taking p m  in a given interaction. In [I91 the value of 
p mimiz ing  the critical FP fixed-point free energy has been found to be p = 0.403 43.. TGs 
fixed point is symmelric (in the sense explained in the main text) and the twc-spin, four-spin, 
six-spin and eight-spin coordinates are 0.02097, 1.96 x 
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-7.69 x IO-' and 2.1,s x 

n 0 K i  -0.09371 -0.09447 -0.04231 -0.02096 -0,11550 - 1 . 1 9 ~ ~ 1 0 - ~  -0.02293. 
U K ;  -0.09371 -0.09447 -0.12974 -0.02096 -0.01720 -0,11342 -0.01791 

n p K: -9.99xlO-) -0.01018 - 2 . 7 3 ~ 1 0 - ~  -1.97xW4 -2.65xIO-' - 1 . 2 3 ~ 1 0 - ~  -2.31xIO-' 

a U h; -9 .99~10-~  -0,01018 -2.72~10-' -1.97~10-' - 3 . 0 7 ~ 1 0 - ~  --1.23~10-~ -1.82xIO-' 
U n -9 .99~10-~  -0.01018 -4.63x10-' -1.97xlO-' -2.65xIO-' -1 .65~10-~  -2.67~10" 

Kg -9.99~10" -0.01018 -6 .59~10-~  -1 .97~10-~  - 2 . 5 1 ~ 1 0 ~ '  -6.94xlO-' - 1 . 7 3 ~ 1 0 ~ ~  

,CII - 4 . 6 8 ~ 1 0 - ~  - 4 . 7 6 ~ 1 0 - ~  - 9 . 0 0 ~ 1 0 - ~  -7 .72~10-~  -2 ,82~10-~  -2 .37~10-~  - 7 . 5 6 ~ 1 0 - ~  
X i ,  -4 .68~lO-~ - 4 . 7 6 ~ 1 0 - ~  -1 .08~10-~  -7 .72~10-~  -5 .59~10-~  -6 .47~10-~  - 8 . 0 6 ~ 1 0 - ~  

we&& ~~ 

K; -9.99x10-3 -0.oi018 

n U K: ~-9.99x10-3 -0.oi018 

--6.54~10-3 -1 .97~10-~  -z.6sx10-4 -6.94~10-7 -1.96,x10-4 

- 6 . 5 ~ ~ 1 0 - 3  -1.97x10-~ -3.07~10-3 -6.95~10-7 -1.48~10-4 

'c;~ -4.68x10-3 -4.76x~0-3 -8.98~10-4 -7.72~10-5 -559x10-4 -2.37~10-7 -7.84~10-5 

n ~i~ -7.6gXi0-3 -7.88~10-3 - 5 . 9 6 ~ 1 0 - ~  -2 .15~10-~  -3 .04~10-~  -3 .42~10-~  -2.i5x1o-~ 

9 

where the interactions are between nearest neighbours, next-to-the-nearest neighbours, the 
four spins of a plaquette and the four spins of a comer (see table 1). The coupling constants 
3,, 3, 3 and 3 6  can be expressed in terms of the constants BG and ,¶M as follows: 

3 = f i  - 4(tanh @&[3 cosh2fi sinh 26 + (cosh 2fi)'sinh 261 ~ 

&= 2(ta11h&)~[(Sinh2fi)~ + cosh2fi(~inh2fi)~] 
3 4  = Z(tanhB~)~(Sinh2fi)' (6) 

= -i(tanhpM)6(sinh2fi)3 

The spin representation has the advantage that it can be more easily studied [18]. ., 

In this paper we will apply the so-called lower-bound renormalization group (LBRG) 
transformation first proposed by JSadanoff [I91 to study the phase diagram of the models 
(1) and (3) as given in the approximation (5). The LBRG transformation can be conveniently 
applied to cases where all the interaction is in an elementary cell of the lattice, as it is in 
the models (1) and (5). The convenience is appreciable especially in D = 3 where other 
RG transformations would be much more difficult from a computational point of view. 

The LBRG transformation produces a lower bound to the free energy which can be 
maximized by conveniently fixing a variational parameter. Its application to various models 
generally gives very accurate estimates of critical exponents [20]. For example, in the 2D 
king model it predicts the inverse critical temperature &t = 0.458 (@p = 0.4407), 
and the exponent U = 0.999 (wonsager = 1) [21]. The drawback of the LBRG transformation 
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is that it preserves the nature of the ground states only in the ferromagnetic region, so that 
it can be reliably applied in a limited region of the phase diagram. 

We will describe the LBRG transformation in section 2. In section 3 we will show the 
results obtained by applying the LBRG transformation to the models (1) and (3). (5).  In 
particular, in model ( l ) ,  the self-avoidness limit is examined for different values of the 
curvature pc. A discussion of our results will follow in section 4. 

E N  M Cirillo Nul G Gonnella 

2. The LBRG transformation 

Here 3 denotes a set of coupling constank, U = (U,, . . .UN]  a spin configuration and 
H ( u , , 7 )  is the Hamiltonian to be studied; the weight function P(u';u)  defines the 
renormalized Hamiltonian H'(u', 3') with new spin variables U;,  ..., U;, (N' < N)~and 
coupling constants 3'. The relation Eo, ?(U'; U) = 1 ensum that the total free energy 
is unchanged. In the LBRG transformation [19] the spin U: are defined on cells like those 
marked by a cross in figure 1; P(u', U )  is chosen as the product over the marked cells of 
the functions 

with p a real parameter and q . 1 ,  . . . UQ the original spins at the vertices of the cube i. 
I?@, IC), where the sum is 

over the elementary cubes of the lattice and IC is the set of couplings normalized to a single 
cell [22], a convenient moving of interactions and factors of (9) will give a new Hamiltonian 
with all the interaction still in a single cell. The renormalized cell Hamiltonian $(U' ,  IC') 
is given. by 

If the original Hamiltonian can be written as H(u, 3) = 

Since we are interested in studying the phase diagrams of the Ising models (1) and (5)  
where only even interactions appear, it will be sufficient to consider the transformation of 

~~ ~. 

Figure 1. A ZD representation of the LBRO tmsformation. The 
crosses indicate the spins U';  the squares are the original spins 
U. The u-dependent terms in the Hamiltonian and in the weight 
function are moved into the grey squares. Full andempty squares 
represent spins of the two original subimices. In the variant of 
the LBRc transformation described in section 4 the 0-dependent 
term are moved into the dark grey cells of the lanice. 
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the 14 even couplings (see table 1) which can be defined on a cell of a 3D cubic lattice. 
One of these couplings is a pure constant, we denote it by~K0; the others are denoted by ICi,  
i = l  ...., 13. 

After some algebra one gets from (10) the recursion laws 

where Qo, . . . , Q13 are analytic functions. The critical properties of the system can be then 
related to the behaviour of the recursion laws close to their fixed points. 

The variational nature of tbe interaction-moving operation was first observed by 
Kadanoff [23]. A lower bound f*(p) to the free-energy per site can be calculated by .~ 

IC!), f”(p) = - lim - ~ ~ f 

n+m 8” 

where Kt’ is the value of after n applications of the LBRG transformation [19]. Following 
the prescription of [19], the parameter p will be fixed by maximizing the function y ( p )  
starting the iterations from the fixed point Hamiltonian with KO = 0. 

3. Results 

Closed intelfaces-model ( I )  

Here the LBRG transformation is applied to calculate the ferromagnetic-paramagnetic (F-P) 
transition surface in the space &,A and A. For completeness, results concerning other 
transitions, not related to ferromagnetic ordering, will be also given. These results have to 
be considered with caution since the LBRG transformidion, as defined in section 2, does not 
correctly take in account the structure of not ferromagnetic ground states. 

The value of p maximizing the critical fixed-point free energy on the F-P surface is 
p: = 0.403 54. In table 1 fixed points related to the F, P and AF (antiferromagnetic) phases 
ire reported for the value p = p:. 

The fixed points (F), (P) and (C) are, respectively, the low-temperature ferromagnetic, 
the high-temperature and the F-P critical fixed points. The LBRG transformation has already 
been applied for calculating the exponents of the 3D Ising model in [19], where the optimal 
value found for p* is p = 0.40343. We do not understand the reasons for the discrepancy 
with our result. The critical fixed point at p = 0.40343 is reported in the caption of table 1. 
At p = p;  the values of the inverse Ising critical temperature and of the exponent U are, 
respectively, ,f&, = 0.23925 and U = 0.6288. The corresponding values at p = 0.40343 
are pitic = 0.23923 and U = 0.6290; the best estimates [24] are = 0.22165 and 
v = 0.6289 f 0.0008, The fixed point (C) is symmetric in the sense that all the two-spin, 
the four-spin, etc interactions are equal. This symmetry was assumed in [19], while here we 
consider recursions in the whole space of couplings. This situation can be compared with 
the results obtained by ,applying &e LBRG transformation to the ZD king model [21]. In 
D 2 the symmetric fixed point has two relevant eigenvalues with an eigenvectcir pointing 
outside the symmetric subspace on the critical  surface.^ Therefore in D = 2, differently 
from the 3~ case, the symmetric critical fixed point, which is found to maximize the free 
energy, cannot be reached starting from non symmetric interactions [21]. 

The fixed points (AF) and (AC) are the antiferromagnetic counterparts of the fixed 
points (F) and (C). The fixed point (AC) is on the transition surface between the AF and 
the P phases; its exponent is U = 0.6349. This surface intersects the surface 3 limiting the 
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Figure 2. The phase diapm obtained by applying the LBRG transformation to the model (1). 
The horizontal surfam at positive $2 separates the F phase al positive from the AE phase. At 
lower values of 2’ the F and the h~ phases are separated by the P phase. 

F phase at positive 31 as shown in figure 2. The model (1) exhibits the exact symmetry 
Zl + -31 [9]. This symmehy is not respected in figure 2. However, we observe that 
simple block transformations would completely miss the F-AF transition in the ZD version 
of the model (1) [25]. On the surface between the F and the AF phases we find the fixed 
point (D); it has one relevant eigenvalue given at p = p,* by h = 2m with yo = 2.724 54. 
We interpret the point (D) as a discontinuity fixed point related to the F-AF first-order 
transition, which should be characterized by the value YD = D = 3 [26]. If we maximize 
the free energy with respect to the discontinuity fixed point, we get YD = 1.78 at p = 0.31, 
which is the lowest value for which the discontinuity fixed point exists. The fact that 
this result is worse than the one obtained at p = p z  can be explained by saying that the 
LBRG transformation does not give good results when not ferromagnetic ground states are 
involved. 

Numerical simulations of 18.91 show the existence of a lie of tricritical points on the 
F-P transition surface close to the 31 = 0 plane; this line, at decreasing values of 3 4 ,  ends 
in a Baxter point. Due to the limits of applicability of the LBRG transformation at small 3 1 ,  
we cannot give reliable predictions on the structure of the phase diagram in the region 
where the F-P and the AF-P surfaces meet. However, we have also studied the RG recursions 
on the line L separating the domains of attraction of the fixed points (C) and (D) on the 
surface 3. On the line L, which is very close to the intersection of the AF-P with the 3 
surface, we find a fixed point Q with two relevant eigenvalues, which annihilates with the 
discontinuity fixed point for p < 0.31. The free energy of this fixed point is maximum at 
p very close to pf. where the exponents of the two relevant eigenvalues are y1 = 1.59347 
and y2 = 0.09564 [27]. The largest not relevant eigenvalue is A = 0.90395. The fixed 
point (L) is also reported in table 1; it can be seen that it is very close to the fixed point (C). 
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4.6 4 A  62 0 U2 0.4 0.6 0.8 1 
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F i e  3. The phase diagram of the model (1) with 3 2  = 34. Fixed points of table 1 are also 
mported. 

Table 2. "he critical values of ps in the self-avoidaess limit for different values of &. The 
Monte Carlo results are taken from [8,91. 

bc 0.04 0 -0.04 -0.1 -0.2 

bs LBRG 0.446 0.472 0.504 0.560 0.873'. 
Monte Carlo - 0.353[*] 0.360191 0.4101g1 0.510[9] 

A realistic discussion of the phase diagram in the plane Z1 = 0, where the FP and the AF-P 
surfaces should meet, is given in 1281. 

In figure 3 the phase diagram is shown in the particular case 34 = 32, which means 
,9c = 0 in the surface representation. The paramagnetic phase, in accord with Monte Carlo 
results and differently from what comes out from mean-field approximation [9], extends at 
positive 31 towards zero temperature. This is related to the high degeneracy of the ground 
states in this region [9]. 

A different representation of the phase diagram can be given in terms of the surface 
parameters ,9~,  ps and pc (see equation (2)). In figure 4 the F-P-AF hansitions are shown 
in the plane p ~ ,  ps for different values of the.curvature pc. The F phase, at large values 
of 6s. describes configurations with diluted small surfaces. By decreasing the value of 
ps, area is favoured to increase and, at the percolation threshold, interfaces invade the 
system. However, it is still possible to distinguish between an inside volume wrapped up 
in interfaces and a different outside volume. By decreasing furtherly the valueof 6s. i f ~ a  
is sufficiently large,~at the king-like F-P transition, a r d o m  isotropic [29] phase is stable 
and the symmetry of the Hamiltonian between inside and outside~is restored. The AF phase 
can be intended as a droplet crystal. The limit f 3 ~  + bo describes a gas of self-avoiding 
surfaces and is particularly relevant for physics. In table 2 the critical values of ps for 
self-avoiding surfaces are reported at different values of the curvature and compared with 
results from simulations. 
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0 02 0.4 0.6 0.8 I 1.2 
k 

Figure 4. The phase diagram of the model (1) in terms of the surface parameters #S and 
#L. The different curves refer b m  the right to the left, respectively, to the values of 
#c = -0.2. -0.1, -0.04 and 0. The symbols F, AF and RI denote, respectively, the ferromagnetic, 
the antiferromagnetic and the random isotropic or paramagnetic phase. 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 

BM 

Figure 5. The phase diagram of the self-dual Z(2) gauge model. The full curve is the self-dual 
line. The broken curves are Critical lines found by applying the LBRG transformation to the 
model (5). 

Open interfaces-model (3), (5) 

The gauge model (3) at p~ = 0 is dual to the 3D king model [ 141. At small ,!h it can be 
expanded on the dual lattice as an king model with many interactions. At the second order 
of this expansion the gauge model is mapped onto the model (5). The LBRG transformation 
has been applied to study the F-P transition in the model (5). Then the results have been 
reported by the formulae (6) and (7) in the plane as shown in figure 5 .  At small 
p~ the critical line starts from the p~ axis at = -4 Intanhptfi,. with pkt = 0.23926. 
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The full curve in figure 5 is the self-dual l ie ,  which is the line mapped onto itself by 
transformations (4), with respect to which the phase diagram has to be symmetric. Then the 
critical line at small @M is mapped by (4) in the region at large &. The two curves meet at 
the point ,SM = 0.241 and @G + 0.719 on the self-dual line. In the phase diagram found by 
numerical simulations [16], the two curves starting at PM = 0 and at @e = CO become first: 
order at tricritical points before meeting on the self-dual line. There, at a triple point, another 
first-order line comes out towards greater values of PM on the self-dual line. This first-order 
line ends with a critical point at finite and positive values of @G and OM. A s  discussed in 
[17], an interesting aspect of the expansion (5) is that the four-spin interaction terms are 
expected to give tricritical points. However, a mean-field approximation of the model (5) 
[17] gives tricritical points quite far beyond the triple point. Also our calculations suggest 
that the transition lines are continuous on the parts drawn in figure 5, which correspond 
to the critical F-P transition in the Ising representation. Therefore, the relevance of the 
four-spin interaction in (5) is probably not sufficient to explain alone the existerice of the 
tricritical points found in simulations. These results will be commented on further in the 
next section. 

4. Discussions and conclusions 

We have applied the LBRG transformation to study the phase diagram of king models 
describing closed and open interfaces. Interacting closed interfaces can be naturally 
expressed as an Ising model, while open surfaces, originally written as a gauge model with 
statistical variables on the bonds, can he mapped on king models only in extreme regions of 
the phase diagram. At large BO, the gauge model describes the interesting physical situation 
of almost-closed surfaces with few defects. 

First consider the model (1) of closed interfaces. Results concerning the transition on 
the nearest-neighbour axis are in good agreement with previous known results. Also the 
value of the king exponent v = 0.6289 is in excellent agreement with other numerical work. 
We expect that the critical surface has been found with a good approximation in :the region 
close l o  the nearest-neighbour axis. Results regarding the interesting case of self-avoiding 
surfaces have been reported in table 2. 

Problems arise when the LBRG transformation is applied to study regions of the phase 
diagram where ordered not ferromagnetic configurations are relevant In particular, the 
LERG transformation does not take into account the 31 + - 3 1  symmetry of the model 
(1) which should give at low temperatures a first-order FAF transition, at 31 = 0. We find 
this first-order transition, but not at 31 = 0 (see figures 2 and 3). Moreover, our results 
cannot reliably describe the region close to the line where the P-P  and^ the ~AFP surfaces 
meet, which should be on the plane fi = 0. However, for completeness, we'have also 
given results concerning this region. 

The model (1) has been largely studied in D = 2 [30], where RG transformations taking 
correctly into account the ground-state structure have been considered giving the expected 
topology of the phase diagram [28,31]. We have tried to generalize the LBRG transformation 
in order to take into account the existence of antiferromagnetic ground states. Then we have 
considered a weizht function WU', U )  distinguishing between spins of different sublattices. 
For each cell marked by a cross in figure 1 the spin U' is coupled only to the four 
spins of one original sublattice (see equation (9) and figure 1). in such a way that two 
nearest neighbouring spins U' &e coupled to the spins U of different sublattices. Then 
all the interaction is moved into the dark grey cells of figure 1 and a*RG transformation 
analogous to (10) can be written in such a way to get a' homogeneous Hamiltonian with 
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the same expression for any elementary cell. By this procedure we have obtained phase 
diagrams which exhibit the symmetry 31 + -31, but with a rather poor precision for the 
critical temperature on the nearest-neigbour axis and for the exponent v .  Moreover the 
tricritical points found numerically 191 close to the plane 3 1  = 0 are not obtained by this 
transformation. Therefore a complete RG study of the phase diagram of the model (1) in 
D = 3 is still an open question. 

In figure 5 we have presented the phase diagram of the self-dual Z(2)  gauge model 
found by applying the LBRG transformation to the model (5). Our estimation of the critical 
lines is reliable especially in the region of validity of the expansion (9, that is at small 
p~ and, by duality, at large p ~ ,  close to the points where the model can be written as an 
king model with only nearest-neighbour interaction. Numerical simulations [16] predict 
that these lines become first-order before meeting on the selfdual line. By our methods, 
we cannot predict such a behaviour. Indeed, our results suggest that the transition line 
remain continuous for a long part beyond the self-dual line. Therefore, even if tricritical 
points could arise in model (5). that expansion is probably not useful to discuss the phase 
diagram of the model (3) close to the self-dual line, for which other methods are needed. 
In conclusions, provided all the discussed limitations, we can say that the application of 
the LBRG transformation to spin models describing lattice interfaces gives, in a relatively 
simple way, phase diagrams in many parameter spaces which are quite accurate especially 
in the region close to the nearest-neighbour axis. 
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